
The Fourth International Conference on e-Learning (eLearning-2013),
26-27 September 2013, Belgrade, Serbia

53

TOWARDS ADVANCED DATA RETRIEVAL FROM LEARNING OBJECTS
REPOSITORIES

VALENTINA PAUNOVIĆ
Belgrade Metropolitan University, valentina.paunovic@fit.edu.rs

SLOBODAN JOVANOVIĆ
Belgrade Metropolitan University, slobodan.jovanovic@metropolitan.edu.rs

Abstract: In improving efficiency of creating learning materials, fundamental role plays concept of reusability. In order
to allow effective exploitation of its content, a repository of learning objects have to enable search procedure which is
powerful and at the same time intuitive and simple for use. We propose an architectural solution for enhanced search,
such that both requirements are satisfied. A search algorithm based on finding min-cost Steiner trees allows finding not
only learning objects which satisfies given query, but at the same time, it enables finding implicit relationships among
different concept. To enable application of such algorithm, we developed a novel algorithm for sparse weighted graph
representation of a LO repository. In addition, user’s ability to retrieve relevant information can be further improved by
extension of query language. We proposed one possible extension based on formal logic and designed an algorithm for
parsing such language.

Keywords: E-Learning, Steiner trees, Query language

1. INTRODUCTION
Considering the emerging popularity of personalized
distance-based learning in many institutions, there is
constant growing demand for more effective creation of
educational materials. A key concept in improved
efficiency of this process is reusability of already created
learning content. Fundamental working unit of teaching
material in e-Learning is learning object (LO), defined by
LOM standard as “any entity, digital or non-digital, that
may be used for learning, education or training” [1][2].
Created learning objects are organized and stored in LO
repositories, from where they can be searched and
retrieved when necessary. The previous definition of LO
allows inclusion of material in various formats (textual,
image, video, etc.) which present serious challenge in
organizing and searching tasks. In order to improve these
procedures, learning objects are enriched by additional
description through metadata.

Central role in data retrieval from a LO repository is
textual search. Even if the targeted LO is not of textual
type, various metadata are given as plain text (title,
keywords, description, etc.) and, therefore, are subject to
textual search. In addition, most of teaching material is in
textual format, which emphasize necessity for this type of
search even more.

The aim of this paper is to present an architectural
solution for effective textual search in large LO
repositories. Instead of traditional search encountered in
web browsers and textual processing applications, we
propose search based on finding Steiner trees. This
approach has two main advantages:

 Even if there is no object which satisfies all terms
from a query, it is possible to detect set of minimal
number of closely related objects such that each term
from the query is present in at least one of the
objects.

 It is possible to detect implicit relationships among
learning objects.

Besides search procedure, efficiency of search procedure
depends on used query language. Traditionally, query
language usually does not provide any operators. Query is
composed of terms and it is assumed that only one
operator is between them - operator and. For example,
query "mathematical physics" is equivalent to request
"find all objects which contains term mathematical and
term physics". Such convention does not support
submitting query which corresponds to request like "find
all objects which contains terms mathematical or
chemical physics."

A novel contribution of this paper consists of the
following:

 We design an algorithm for creating sparse weighted

graph representation of a learning objects repository,
which is suitable for application of algorithm for
finding Steiner trees.

 We propose an extension of query language based on
formal logic and an algorithm for parsing such
language.

Architecture of the system is presented in Figure 1.
LORMS (Learning Objects Repository Management
System) creates graph representation of LOR which is
used by search engine to obtain results. Query has to be
processed by query parser before performing search
procedure. Details of this steps are explained in the rest of
the paper.

54

1

Figure 1. Architecture of search system

2. DATA RETRIEVAL FOR LO REUSABILITY
Starting point in the most common type of textual search
is forming a query (Q) composed of relevant terms.
Typing function limit in a web browser will result in web
pages which contain both terms – function and limit.
However, the challenge arises with increasing query
complexity. For example, what is a result if there is no
page containing all terms from query? The answer
depends on search engine. For example, Google search
engine will try to eliminate part of the query and perform
search on modified queries, thus, retrieving pages which
partially satisfy the query.

In searching through LO repositories, this might not be
the desired solution. Instead of trying to return one LO
which satisfies the complete query, which may result in
empty resulting set if there is no such query, search
engine could try to return a set of learning objects, such
that the whole set satisfies query, even if a particular
element of the set does not. In the previous example, if
there is no such LO which contains both terms (function
and limit), the result of search procedure can be set of two
LO, one of which contains function, and the other
contains limit. In addition, this type of search is suitable
for finding implicit relationships among concepts, which
can be useful tool in creating learning material. Finally,
results of this type of search can be used as a
recommender system which provides possible directions
how to proceed further after completing explanation of
one concept.

The proposed approach raises an important issue which
accompanies every search process – ranking of the
obtained results. Obviously, there could be more than one
LO which contains term function and, similarly, more
than one LO which contains term limit. Any combination
from these two groups is an answer to the query, but it is
not obvious in which order these answers should be
presented to the user. In addition, queries with more than
two terms could result in more complicated structures.
For example, in case of a three-term query, the final result
can consist of one, two, or three LO, with various
combinations which LO contains which term from the

1 This paper provides some results obrained by the project with
code III44006 financed by the Ministry of Education, Science
and Technological Development of Rebublic of Serbia

query. Intuitively, a valid solution to the previous problem
should satisfy the following two conditions:

 [C1] Results which contain smaller number of LO

correspond to stronger relationships among terms
from query and should have advantage in rankings
(the best solution consist of only one LO);

 [C2] Results which contain more similar LO (from
the same area or subject) correspond to stronger
relationships among terms from query and should
have advantage in rankings.

The second condition introduces some ambiguity and
needs further clarification. Let’s say that there is a
function sim(LO1, LO2) which return degree of similarity
between learning objects LO1 and LO2. Specifying such
function will be one of topic in the rest of the paper. Such
function enables creation of a weighted graph whose
vertices represent learning objects from repository and
edge weights are determined by function sim. Each vertex
is characterized by additional attributes – terms which
corresponds to words from LO’s body or its metadata.

In the rest of the paper, we will see how to specify
function sim, create a graph representation of the
repository and perform search on such graph in an
efficient way.

3. LO REPRESENTATION AND SIMILARITY
MEASURE

Vector space model

Let },...,,{ 21 rdddR = be a repository of learning

objects and },...,,{ 21 kwwwW = the set of all distinct
terms from R . The set W is obtained by the following
procedure:

foreach learning object d in R
 foreach word w in d
 if(w not in stop_words)
 stem(w);
 add w to W;

In the previous algorithm, when searching for words in a
particular LO, one has to search for words from the
content of LO and various metadata – title, keywords,
description, etc. All parts of LO from which words are
collected will be referred as LO slots in the rest of the
paper. Non-descriptive stop words are excluded (like
articles, prepositions, conjunctions, etc.), while other
types of words are stemmed to obtain their base or root.
For example, words fishing, fished and fisher are all
reduced to root fish.

For representing learning objects we will use vector space
model, a common way to represent documents in various
NLP tasks. According to it, each LO from the repository
R is represented as an m-dimensional TF-IDF vector

),...,,()(21 mtfidftfidftfidfdr =
→

. (1) (

55

 It is determined in the following way. First, for each term
of a learning object d , value itf is calculated as its
weighted frequency:

∑=
j

ji jinhtf),(, (2)

where
),(jin is number of occurrences of term iw in the

j-th slot of LO d ;
 jh is a weight associated with the j-th slot.
Second, inverse document frequency is calculated in the
following way:

|}:{|
||log

dwRd
Ridf

i
i ∈∈
= , (3)

where |A| is cardinal number of a set A. The role of idf
component is to reduce impact of words which are
frequent across all documents and, thus, have small
discriminating power. Finally, i-th component of the
vector is calculated as product of term frequency and
inverse document frequency:

iii idftftfidf *= . (4) (4)

Weighted sum in tf component is used in order to
emphasize impact of certain LO slots. In search process,
weights are assigned according to priorities:
 The highest impact (weight) should have terms from

metadata title, keywords and description.
 Medium impact is reserved for terms from content (if

there is textual content).
 Terms from the rest of searchable metadata should

have low impact.

LO similarity
Text similarity has been studied in various contexts of
NLP tasks. Probably the most popular and used is cosine
distance which corresponds to correlation between two
vectors. For two learning objects LO1 and LO2, cosine
similarity is defined as cosine of angle between vectors
which represent these learning objects in vector space
model:

||)1(||*||)1(||

)2()1()2,1(
drdr

drdrddsim →→

→→

•
= , (5)

where • indicates scalar product of two vectors and

||)(|| dr
→

denotes the intensity of vector)(dr
→

. Although
cosine can have values in interval [-1, 1], function sim can
have values from interval [0, 1] because all components
of vectors in vector space model are positive. If similarity
is perfect, sim returns 1; lower values correspond to lower
similarity degree.

Similarity measure defined by (5) returns larger values for
objects which exhibits more significant similarity. There

are situations where the opposite is required, in which
case distance measure is used instead of similarity
measure. Obviously, distance and similarity measure are
correlated and each of them can be defined by using the
other one. For cosine similarity, we can define distance
measure in one of the following ways:

)2,1(1)2,1(ddsimdddist −= , (7)

))2,1(log()2,1(ddsimdddist −= . (8)

4. GRAPH REPRESENTATION OF LO
REPOSITORY
Specified similarity measure between learning objects
enables creating graph representation of repository. Graph
G={V, E} is created in the following way:
 The set of vertices V corresponds to the set of

learning objects. Each LO is represented in the graph
by one vertex.

 Each vertex of the graph is enriched by the set of
attributes A, which corresponds to the set of words
by which LO can be searched. These words are from
all searchable slots of the LO.

 Initially the set of edges E contains edges between
every two vertices. The weight of each edge is
defined by the function dist and corresponds to the
distance between appropriate learning objects. The
reason for using distance instead of similarity
measure for edge weights will be explained later in
section which deals with the search algorithm.

Graph representation allows us to formalize through
graph-theory terminology the central problem in this
paper:
Problem definition (MCGST-k) – Let G={V, E} be an
undirected weighted graph with set of vertices V and set
of weighted edges E. Each vertex iv from V is

characterized with set of attributes iA . Let Q be a query
which consists of n terms. An answer tree to a query is
any tree from G, such that each term from Q is contained
in the set of attributes of at least one vertex of the tree.
The task is to find top-k answer trees. Ranking is
performed such that conditions C1 and C2 from Section 2
are satisfied.

For a three-term query which consists of terms w1, w2,
w3, examples of possible results are given in Figure 2. A
result can contain only one object which satisfies all turns
from query (a). Such result is the best ranked. Result
which consist of two objects (b) should be higher ranked
then result which consists of three objects (c). It is
possible that a resulting tree contains nodes which do not
contain any term from the query (dark node in d).

The main problem in performing any kind of search on a
graph created as previously explained is performance
limited by the complexity of graph. Number of learning
objects r induces 2/2r edges, but significant number
among them has small weights close to zero, which
indicates there is no relevant similarity. Such edges
should be eliminated from the graph. In other words, after

56

graph creation, it is necessary to perform graph
sparsification.

Figure 2. Examples of Steiner-trees search

The following requirements should be satisfied:
 No vertex should be removed from the graph.
 Edges which represent low similarity should be

removed from the graph.
 Edge removal should not violate graph connectivity.
 Targeted number of edges which should remain in

the graph is specified by threshold value T. Graph
obtained by sparsification process should have less
than T edges, unless it violates connectivity
constraint.

 If an edge with weight w is in S, then all edges with
weights greater than or equal to w should be in S
because there should be no priority among edges of
equal weights.

 If two learning objects are in relationship specified
by the appropriate metadata relation, it should be
preserved in the graph regardless of similarity degree
between these two learning objects.

For graph sparsification which satisfies all previous
requirements, we propose the following algorithm:

Sparsify(G, T)
 sort in decreasing order all edges
according to their weights and put them in
priority queue P;
 add all vertices from G to S;
 while(true)
 wMax <- weight of the edge
 with maximum weight from P;
 nMax <- number of edges from
 P with weight wMax;
 if (S is not connected)
 add to S all edges
 from P with weight
 wMax;
 remove all edges from P
 with weight wMax;
 else
 if (number of edges
 in S + nMax < T)
 add to S all
 edges from P
 with weight
 wMax;
 remove all
 edges from P
 with weight

 wMax;
 else
 break;

 foreach edge e in P
 if (exists relationship
 metadata between LO
 represented by vertices of the
edge)
 add e to S;

Figure 3. Blok diagram of sparsify algorithm

The complexity of the proposed algorithm is dominated
by the sorting procedure from the beginning of the
algorithm. The rest of the procedure is linear in number of
edges. Considering the fact that initially number of edges
is quadratic function of number of learning objects,
complexity of the algorithm is

)(|)|log|(| 2rOEEO = .

5. SEARCH

Search algorithm
Search problem MCGST-k, as defined in the previous
section, is an extension of the problem of finding the

57

highest ranked tree known as minimum cost group Steiner
tree problem (MCGST-1). The problem belongs to class
of NP-complete problems which is proved by reducing it
to minimum set cover problem [3]. Various approximate
solutions of MCGST-1 problem are proposed. Some of
them [3]-[7] are not easily extended to solving MCGST-k
in an efficient manner because it would require finding all
possible solutions [8]. Recently, several extendable
solutions are proposed [8]-[10]. For our purpose,
satisfying solution is algorithm DBPF-k proposed in [11]
because it satisfies the following conditions:

 Although the solution of MCGST-k is approximate,

the first returned result is optima, i.e., solution of
MCGST-1 is optimal.

 Solution is obtained in polynomial time.
 Efficiency of DBPF-k algorithm depends on graph

sparseness. In the previous section, we showed how
to perform sparsification of a graph. Therefore, we
can expect DBPF-k to perform well on graphs
obtained from repositories of learning objects.

 Efficiency of DBPF-k algorithm depends on number
of terms in query (|Q|<<log|V|). Typical usage
scenario in searching for learning objects satisfies
this condition. Therefore, we do not expect this
condition to be an obstacle in efficiency.

Algorithm DBPF is developed to work on databases, but
it is essentially search on underlying graph. Therefore,
once the graph representation of a repository is created, its
application to our problem is straightforward. Considering
the fact that DBPF is min-cost type of algorithm, it
becomes obvious why distance measure is used for graph
weights instead of similarity measure. More details on
design of DBPF, proof of its correctness and analysis of
complexity can be find in [11].

Query language
In previous discussion, a search query Q was defined as
set of terms. Submitting such query to the search engine
implies finding all trees such that all terms from the query
are contained in each of the returned answers. For
example, query “math function” is a simple query and
requires finding results which contain both words “math”
and “function”. This type of queries is common in search
engines of web browsers and textual processors. In
searching through a LO repository, often there is a certain
level of uncertainty about terminology and relationships
among concepts.

To avoid missing existent learning objects, it would be
convenient to expand query language to allow resolving
such disambiguates. For example, “math function” is
possibly in some learning objects named as
“mathematical function”. In this simple example, it is
possible for user to type two different queries and obtain
wanted results. However, in longer and more complex
queries, it would be more convenient and efficient for
user to allow submitting a query which finds all learning
objects (or, more precisely, trees of learning objects)
which corresponds to demand “find math or mathematical
function”. For this purpose, we propose a simple extended

query language based on rules of formal logic. The
language is enriched by two operators:

 Operator and, marked by reserved word %AND.
 Operator or, marked by reserved word %OR.

In order to simplify use of these operators, the following
convention is established:

 Both operators have the same precedence priority.
 Expressions are evaluated from left to right.
 If there is no operator between two terms, implicitly

is assumed %AND operation. For example, “math
function” is evaluated as “math %AND function”.

 Associativity rule is preserved from formal logic.

By using these two operators, as well as parentheses, a
user can form more complex queries. A query for finding
mathematical or math functions can be specified as
“(math %OR mathematical) %AND function”. Query
“(operations management) %OR (business operations
control)” will treat “operations management” and
“business operations control” as two separate queries and
return union of their results.

Before explaining an algorithm for parsing queries
enriched by previously described operators, first we will
introduce some formal definitions.

Definition 1 (Term) – Term (denoted by lower case letter
t) is a word which is used in a query.

Definition 2 (Simple Query) – Simple query (denoted by
capital letter Q) is defined as a set of terms:

},...,,{ ||21 QtttQ = . ()

Definition 3 (Expression) – Expression (denoted by
capital letter E) is defined as a set of simple queries:

},...,,{ ||21 EQQQE = . ()

Query “(operations management) %OR (business
operations control)” would be evaluated as an expression
which consists of two simple queries:

},{1 managementoperationsQ = ,

},,sin{2 controloperationsessbuQ = ,

},{ 21 QQE = .

Evaluation of more complex queries requires defining two
binary operations on expression, which corresponds to
previously introduced operators (%AND, %OR) of query
language:
 Operation ∧ corresponds to operator %AND:

},|{ 2121 EQEQQQEE jiji ∈∈=∧ . ()

 Operation ∨ corresponds to operator %OR:

2121 EEEE =∨ . ()

58

We will explain effect of these two operations on a simple
example. Let say that we have four terms a, b, c, d. Query
(a %AND b) %OR (c %AND d) can be evaluated as
follows:

},{1 baQ = , },{2 dcQ = , },{ 21 QQE = .

Therefore, search algorithm has to be applied on two
simple queries and the final result is union of them.
Alternatively, evaluation can be performed in the
following way:

}{1 aQ = , }{2 bQ = , }{3 cQ = , }{4 dQ = ,

}{ 11 QE = , }{ 22 QE = , }{ 33 QE = , }{ 44 QE = ,

)()(4321 EEEEE ∧∨∧= .
In either case, the final result of search procedure is the
same.

Extending query language by two operators (%AND,
%OR) requires algorithm for parsing a query before
search algorithm can be applied. Complex expressions
like (a %OR b) %AND ((c %AND d) %OR e), for
example, cannot be evaluated directly. We propose the
following algorithm for performing this task:

initialize S as empty stack of expressions;
initialize empty set of search results R;

foreach token w of query
 switch(w):
 case “(”,“%AND”,“%OR”: push w to S;
 case “)”:
 E<-evaluateTopExpression(S);
 push E to S;
 default:
 if(previous token is term)
 push “%AND” to S;
 Q = {w};
 E = {Q};
 push E to S;
 end switch;

E<-evaluateTopExpression(S);
foreach simple query Q from E
 result = DBPF-k(Q);
 add result to R;

In the previously described algorithm, help function
evaluateTopExpression is used to evaluate value of
expression from the top of the stack. It is realized in the
following way:

6. CONCLUSION
In this paper, we proposed an architectural solution for
enhanced search through repositories of learning objects.
Traditional textual search encountered in web browsers
and text processing applications does not satisfy needs for
data retrieval from learning object repositories mainly
because it ignores existent explicit and implicit
relationships among objects. In addition, a complex query
with more words can result in an empty result set. As a
solution to these problems, we proposed search based on
finding top-k min-cost Steiner trees.

In particular, we developed an algorithm for sparse
weighted graph representation of a LO repository, which
is suitable for application of algorithm for finding Steiner
trees proposed in [11]. To further improve searching
capabilities, we proposed extension of query language
based on formal logic and designed an algorithm for
parsing it. In order to keep simplicity, the extension is
reduced to only two additional operators, which
corresponds to logical AND and logical OR.

ACKNOWLEDGMENT
This work was supported by Ministry of Education,
Science and Technology (Project III44006).

valuateTopExpression(S)
{
initialize SH as empty stack;
while (S not empty)
 wh<-pop from S;
 if(wh = “(”)
 break;
 push wh to SH;

while (true)
 first<-pop from SH;
 if (SH is empty) return first;
 operator<-pop from SH;
 second<-pop from SH;
 switch(operator)
 case “%AND”:
 result = first ^ second;
 case “%OR”:
 result = first v second;
 end switch;
 push result to SH;
}

LITERATURE
[1] LOM (2002). Final Draft Standard for Learning

Object Metadata IEEE 14854.12.1-2002. On-line
available: http://ltsc.ieee.org/.

[2] IEEE Learning Technology Standards Committee
[Online] Available: http://ltsc.ieee.org/

[3] G. Reich and P. Widmayer. Beyond steiner’s
problem: A vlsi oriented generalization. In Proc. of
WG’89, 1989.

[4] E. Ihler. Bounds on the quality of approximate
solutions to the group steiner problem. In Proc. of
WG’90, 1990.

[5] C. D. Bateman, C. S. Helvig, G. Robins, and A.
Zelikovsky. Probably good routing tree construction
with multi-port terminals. In Proc. of ISPD’97, 1997.

C. Helvig, B. Robins, and A. Zelikovsky. Improved
approximation bounds for the group Steiner problem.
Networks,37(1),2001.

[6] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A.
Goel, S. Guha, and M. Li. Approximation algorithms
for directed Steiner problems. Journal of Algorithms,
33(1),1999.

[7] W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal.
Query relaxation by structure and semantics for

http://ltsc.ieee.org/
http://ltsc.ieee.org/

59

retrieval of logical web documents. IEEE Trans.
Knowl.Data.Eng.,14(4),2002.

[8] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing
in databases using banks. In Proc. of ICDE’02, 2002.

[9] K. Varun, P. Shashank, C. Soumen, S. Sudarshan, D.
Rushi, and K. Hrishikesh. Bidirectional expansion for
keyword search on graph databases. In Proc. of
VLDB’05,2005.

[10] B. Ding, J.X. Yu, S. Wang, L. Qing, X. Zhang, and
X. Lin. Finding top-k min-cost connected trees in
databases.ICDE,2007

