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Abstract: In improving efficiency of creating learning materials, fundamental role plays concept of reusability. In order 
to allow effective exploitation of its content, a repository of learning objects have to enable search procedure which is 
powerful and at the same time intuitive and simple for use. We propose an architectural solution for enhanced search, 
such that both requirements are satisfied. A search algorithm based on finding min-cost Steiner trees allows finding not 
only learning objects which satisfies given query, but at the same time, it enables finding implicit relationships among 
different concept. To enable application of such algorithm, we developed a novel algorithm for sparse weighted graph 
representation of a LO repository. In addition, user’s ability to retrieve relevant information can be further improved by 
extension of query language. We proposed one possible extension based on formal logic and designed an algorithm for 
parsing such language.   
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1. INTRODUCTION  
Considering the emerging popularity of personalized 
distance-based learning in many institutions, there is 
constant growing demand for more effective creation of 
educational materials. A key concept in improved 
efficiency of this process is reusability of already created 
learning content. Fundamental working unit of teaching 
material in e-Learning is learning object (LO), defined by 
LOM standard as “any entity, digital or non-digital, that 
may be used for learning, education or training” [1][2]. 
Created learning objects are organized and stored in LO 
repositories, from where they can be searched and 
retrieved when necessary. The previous definition of LO 
allows inclusion of material in various formats (textual, 
image, video, etc.) which present serious challenge in 
organizing and searching tasks. In order to improve these 
procedures, learning objects are enriched by additional 
description through metadata. 
 
Central role in data retrieval from a LO repository is 
textual search. Even if the targeted LO is not of textual 
type, various metadata are given as plain text (title, 
keywords, description, etc.) and, therefore, are subject to 
textual search. In addition, most of teaching material is in 
textual format, which emphasize necessity for this type of 
search even more.  
 
The aim of this paper is to present an architectural 
solution for effective textual search in large LO 
repositories. Instead of traditional search encountered in 
web browsers and textual processing applications, we 
propose search based on finding Steiner trees. This 
approach has two main advantages: 
 

 Even if there is no object which satisfies all terms 
from a query, it is possible to detect set of minimal 
number of closely related objects such that each term 
from the query is present in at least one of the 
objects. 

 It is possible to detect implicit relationships among 
learning objects. 

Besides search procedure, efficiency of search procedure 
depends on used query language. Traditionally, query 
language usually does not provide any operators. Query is 
composed of terms and it is assumed that only one 
operator is between them - operator and. For example, 
query "mathematical physics" is equivalent to request 
"find all objects which contains term mathematical and 
term physics". Such convention does not support 
submitting query which corresponds to request like "find 
all objects which contains terms mathematical or 
chemical physics." 
 
A novel contribution of this paper consists of the 
following: 
 
 We design an algorithm for creating sparse weighted 

graph representation of a learning objects repository, 
which is suitable for application of algorithm for 
finding Steiner trees.  

 We propose an extension of query language based on 
formal logic and an algorithm for parsing such 
language.         

 
Architecture of the system is presented in Figure 1.  
LORMS (Learning Objects Repository Management 
System) creates graph representation of LOR which is 
used by search engine to obtain results. Query has to be 
processed by query parser before performing search 
procedure. Details of this steps are explained in the rest of 
the paper.  
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Figure 1. Architecture of search system 

2. DATA RETRIEVAL FOR LO REUSABILITY  
Starting point in the most common type of textual search 
is forming a query (Q) composed of relevant terms. 
Typing function limit in a web browser will result in web 
pages which contain both terms – function and limit. 
However, the challenge arises with increasing query 
complexity. For example, what is a result if there is no 
page containing all terms from query? The answer 
depends on search engine. For example, Google search 
engine will try to eliminate part of the query and perform 
search on modified queries, thus, retrieving pages which 
partially satisfy the query. 
 
In searching through LO repositories, this might not be 
the desired solution. Instead of trying to return one LO 
which satisfies the complete query, which may result in 
empty resulting set if there is no such query, search 
engine could try to return a set of learning objects, such 
that the whole set satisfies query, even if a particular 
element of the set does not. In the previous example, if 
there is no such LO which contains both terms (function 
and limit), the result of search procedure can be set of two 
LO, one of which contains function, and the other 
contains limit. In addition, this type of search is suitable 
for finding implicit relationships among concepts, which 
can be useful tool in creating learning material. Finally, 
results of this type of search can be used as a 
recommender system which provides possible directions 
how to proceed further after completing explanation of 
one concept. 
 
The proposed approach raises an important issue which 
accompanies every search process – ranking of the 
obtained results. Obviously, there could be more than one 
LO which contains term function and, similarly, more 
than one LO which contains term limit. Any combination 
from these two groups is an answer to the query, but it is 
not obvious in which order these answers should be 
presented to the user. In addition, queries with more than 
two terms could result in more complicated structures. 
For example, in case of a three-term query, the final result 
can consist of one, two, or three LO, with various 
combinations which LO contains which term from the 
                                                           
1 This paper provides some results obrained by the project with 
code III44006 financed by the Ministry of Education, Science 
and Technological Development of Rebublic of Serbia 

query. Intuitively, a valid solution to the previous problem 
should satisfy the following two conditions:  
 
 [C1] Results which contain smaller number of LO 

correspond to stronger relationships among terms 
from query and should have advantage in rankings 
(the best solution consist of only one LO); 

 [C2] Results which contain more similar LO (from 
the same area or subject) correspond to stronger 
relationships among terms from query and should 
have advantage in rankings. 

 
The second condition introduces some ambiguity and 
needs further clarification. Let’s say that there is a 
function sim(LO1, LO2) which return degree of similarity 
between learning objects LO1 and LO2. Specifying such 
function will be one of topic in the rest of the paper. Such 
function enables creation of a weighted graph whose 
vertices represent learning objects from repository and 
edge weights are determined by function sim. Each vertex 
is characterized by additional attributes – terms which 
corresponds to words from LO’s body or its metadata.  
 
In the rest of the paper, we will see how to specify 
function sim, create a graph representation of the 
repository and perform search on such graph in an 
efficient way.  

3. LO REPRESENTATION AND SIMILARITY 
MEASURE 

Vector space model  

Let },...,,{ 21 rdddR =  be a repository of learning 

objects and },...,,{ 21 kwwwW = the set of all distinct 
terms from R . The set W  is obtained by the following 
procedure: 
 
foreach learning object d in R 
 foreach word w in d 
  if(w not in stop_words) 
   stem(w); 
   add w to W;  
 
In the previous algorithm, when searching for words in a 
particular LO, one has to search for words from the 
content of LO and various metadata – title, keywords, 
description, etc. All parts of LO from which words are 
collected will be referred as LO slots in the rest of the 
paper. Non-descriptive stop words are excluded (like 
articles, prepositions, conjunctions, etc.), while other 
types of words are stemmed to obtain their base or root. 
For example, words fishing, fished and fisher are all 
reduced to root fish.  
 
For representing learning objects we will use vector space 
model, a common way to represent documents in various 
NLP tasks.  According to it, each LO from the repository 
R is represented as an m-dimensional TF-IDF vector 

),...,,()( 21 mtfidftfidftfidfdr =
→

. (1)  (  
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 It is determined in the following way. First, for each term 
of a learning object d , value itf  is calculated as its 
weighted frequency: 

∑=
j

ji jinhtf ),(  , (2) 

where 
 ),( jin  is number of occurrences of term iw  in the 

j-th slot of LO d ; 
 jh  is a weight associated with the j-th slot. 
Second, inverse document frequency is calculated in the 
following way: 

|}:{|
||log

dwRd
Ridf

i
i ∈∈
= , (3) 

where |A| is cardinal number of a set A. The role of idf  
component is to reduce impact of words which are 
frequent across all documents and, thus, have small 
discriminating power. Finally, i-th component of the 
vector is calculated as product of term frequency and 
inverse document frequency: 

iii idftftfidf *= . (4)    (4) 

Weighted sum in tf  component is used in order to 
emphasize impact of certain LO slots. In search process, 
weights are assigned according to priorities: 
 The highest impact (weight) should have terms from 

metadata title, keywords and description. 
 Medium impact is reserved for terms from content (if 

there is textual content). 
 Terms from the rest of searchable metadata should 

have low impact.  

LO similarity 
Text similarity has been studied in various contexts of 
NLP tasks. Probably the most popular and used is cosine 
distance which corresponds to correlation between two 
vectors. For two learning objects LO1 and LO2, cosine 
similarity is defined as cosine of angle between vectors 
which represent these learning objects in vector space 
model: 

||)1(||*||)1(||

)2()1()2,1(
drdr

drdrddsim →→

→→

•
=  , (5) 

where • indicates scalar product of two vectors and 

||)(|| dr
→

denotes the intensity of vector )(dr
→

. Although 
cosine can have values in interval [-1, 1], function sim can 
have values from interval [0, 1] because all components 
of vectors in vector space model are positive. If similarity 
is perfect, sim returns 1; lower values correspond to lower 
similarity degree.  
 
Similarity measure defined by (5) returns larger values for 
objects which exhibits more significant similarity. There 

are situations where the opposite is required, in which 
case distance measure is used instead of similarity 
measure. Obviously, distance and similarity measure are 
correlated and each of them can be defined by using the 
other one. For cosine similarity, we can define distance 
measure in one of the following ways: 

 )2,1(1)2,1( ddsimdddist −= , (7) 

))2,1(log()2,1( ddsimdddist −= . (8) 

4. GRAPH REPRESENTATION OF LO 
REPOSITORY  
Specified similarity measure between learning objects 
enables creating graph representation of repository. Graph 
G={V, E} is created in the following way: 
 The set of vertices V corresponds to the set of 

learning objects. Each LO is represented in the graph 
by one vertex. 

 Each vertex of the graph is enriched by the set of 
attributes A, which corresponds to the set of words 
by which LO can be searched. These words are from 
all searchable slots of the LO. 

 Initially the set of edges E contains edges between 
every two vertices. The weight of each edge is 
defined by the function dist and corresponds to the 
distance between appropriate learning objects. The 
reason for using distance instead of similarity 
measure for edge weights will be explained later in 
section which deals with the search algorithm. 

 
Graph representation allows us to formalize through 
graph-theory terminology the central problem in this 
paper: 
Problem definition (MCGST-k) – Let G={V, E} be an 
undirected weighted graph with set of vertices V and set 
of weighted edges E. Each vertex iv  from V is 

characterized with set of attributes iA . Let Q be a query 
which consists of n terms. An answer tree to a query is 
any tree from G, such that each term from Q is contained 
in the set of attributes of at least one vertex of the tree. 
The task is to find top-k answer trees. Ranking is 
performed such that conditions C1 and C2 from Section 2 
are satisfied. 
 
For a three-term query which consists of terms w1, w2, 
w3, examples of possible results are given in Figure 2. A 
result can contain only one object which satisfies all turns 
from query (a). Such result is the best ranked. Result 
which consist of two objects (b) should be higher ranked 
then result which consists of three objects (c). It is 
possible that a resulting tree contains nodes which do not 
contain any term from the query (dark node in d).  
 
The main problem in performing any kind of search on a 
graph created as previously explained is performance 
limited by the complexity of graph. Number of learning 
objects r  induces 2/2r  edges, but significant number 
among them has small weights close to zero, which 
indicates there is no relevant similarity. Such edges 
should be eliminated from the graph. In other words, after 
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graph creation, it is necessary to perform graph 
sparsification. 
 

 
Figure 2. Examples of Steiner-trees search 

 
The following requirements should be satisfied: 
 No vertex should be removed from the graph. 
 Edges which represent low similarity should be 

removed from the graph. 
 Edge removal should not violate graph connectivity. 
 Targeted number of edges which should remain in 

the graph is specified by threshold value T. Graph 
obtained by sparsification process should have less 
than T edges, unless it violates connectivity 
constraint. 

 If an edge with weight w is in S, then all edges with 
weights greater than or equal to w should be in S 
because there should be no priority among edges of 
equal weights. 

 If two learning objects are in relationship specified 
by the appropriate metadata relation, it should be 
preserved in the graph regardless of similarity degree 
between these two learning objects.   

For graph sparsification which satisfies all previous 
requirements, we propose the following algorithm: 
 
Sparsify(G, T) 
 sort in decreasing order all  edges 
according to their weights  and  put them in 
priority queue P; 
 add all vertices from G to S; 
 while(true) 
  wMax <- weight of the edge  
 with maximum weight from P; 
  nMax <- number of edges from  
 P with weight wMax; 
    if (S is not connected) 
    add to S all edges  
   from P with weight  
   wMax; 
   remove all edges from P 
   with weight wMax; 
  else 
   if (number of edges  
  in S + nMax < T) 
    add to S all  
    edges from P  
    with weight  
    wMax; 
    remove all  
    edges from P  
    with weight  

    wMax; 
   else 
    break; 
 
 foreach edge e in P 
  if (exists relationship  
  metadata between LO   
 represented by vertices of   the 
edge) 
   add e to S;  
 

 
Figure 3. Blok diagram of sparsify algorithm 

 
The complexity of the proposed algorithm is dominated 
by the sorting procedure from the beginning of the 
algorithm. The rest of the procedure is linear in number of 
edges. Considering the fact that initially number of edges 
is quadratic function of number of learning objects, 
complexity of the algorithm is 

)(|)|log|(| 2rOEEO = . 

5. SEARCH 

Search algorithm 
Search problem MCGST-k, as defined in the previous 
section, is an extension of the problem of finding the 
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highest ranked tree known as minimum cost group Steiner 
tree problem (MCGST-1). The problem belongs to class 
of NP-complete problems which is proved by reducing it 
to minimum set cover problem [3]. Various approximate 
solutions of MCGST-1 problem are proposed. Some of 
them [3]-[7] are not easily extended to solving MCGST-k 
in an efficient manner because it would require finding all 
possible solutions [8]. Recently, several extendable 
solutions are proposed [8]-[10]. For our purpose, 
satisfying solution is algorithm DBPF-k proposed in [11] 
because it satisfies the following conditions: 
 
 Although the solution of MCGST-k is approximate, 

the first returned result is optima, i.e., solution of 
MCGST-1 is optimal. 

 Solution is obtained in polynomial time. 
 Efficiency of DBPF-k algorithm depends on graph 

sparseness. In the previous section, we showed how 
to perform sparsification of a graph. Therefore, we 
can expect DBPF-k to perform well on graphs 
obtained from repositories of learning objects. 

 Efficiency of DBPF-k algorithm depends on number 
of terms in query (|Q|<<log|V|). Typical usage 
scenario in searching for learning objects satisfies 
this condition. Therefore, we do not expect this 
condition to be an obstacle in efficiency. 

 
Algorithm DBPF is developed to work on databases, but 
it is essentially search on underlying graph. Therefore, 
once the graph representation of a repository is created, its 
application to our problem is straightforward. Considering 
the fact that DBPF is min-cost type of algorithm, it 
becomes obvious why distance measure is used for graph 
weights instead of similarity measure. More details on 
design of DBPF, proof of its correctness and analysis of 
complexity can be find in [11].  

Query language 
In previous discussion, a search query Q was defined as 
set of terms. Submitting such query to the search engine 
implies finding all trees such that all terms from the query 
are contained in each of the returned answers. For 
example, query “math function” is a simple query and 
requires finding results which contain both words “math” 
and “function”. This type of queries is common in search 
engines of web browsers and textual processors. In 
searching through a LO repository, often there is a certain 
level of uncertainty about terminology and relationships 
among concepts. 
 
To avoid missing existent learning objects, it would be 
convenient to expand query language to allow resolving 
such disambiguates. For example, “math function” is 
possibly in some learning objects named as 
“mathematical function”.  In this simple example, it is 
possible for user to type two different queries and obtain 
wanted results. However, in longer and more complex 
queries, it would be more convenient and efficient for 
user to allow submitting a query which finds all learning 
objects (or, more precisely, trees of learning objects) 
which corresponds to demand “find math or mathematical 
function”. For this purpose, we propose a simple extended 

query language based on rules of formal logic. The 
language is enriched by two operators: 
 
 Operator and, marked by reserved word %AND. 
 Operator or, marked by reserved word %OR.  

 
In order to simplify use of these operators, the following 
convention is established: 
 
 Both operators have the same precedence priority. 
 Expressions are evaluated from left to right.  
 If there is no operator between two terms, implicitly 

is assumed %AND operation. For example, “math 
function” is evaluated as “math %AND function”. 

 Associativity rule is preserved from formal logic. 
 

By using these two operators, as well as parentheses, a 
user can form more complex queries. A query for finding 
mathematical or math functions can be specified as 
“(math %OR mathematical) %AND function”. Query 
“(operations management) %OR (business operations 
control)” will treat “operations management” and 
“business operations control” as two separate queries and 
return union of their results. 
 
Before explaining an algorithm for parsing queries 
enriched by previously described operators, first we will 
introduce some formal definitions. 
 
Definition 1 (Term) – Term (denoted by lower case letter 
t) is a word which is used in a query.  
 
Definition 2 (Simple Query) – Simple query (denoted by 
capital letter Q) is defined as a set of terms: 

},...,,{ ||21 QtttQ = . () 

Definition 3 (Expression) – Expression (denoted by 
capital letter E) is defined as a set of simple queries: 

},...,,{ ||21 EQQQE = . () 

Query “(operations management) %OR (business 
operations control)” would be evaluated as an expression 
which consists of two simple queries: 

},{1 managementoperationsQ = , 

},,sin{2 controloperationsessbuQ = , 

},{ 21 QQE = . 

Evaluation of more complex queries requires defining two 
binary operations on expression, which corresponds to 
previously introduced operators (%AND, %OR) of query 
language: 
 Operation ∧ corresponds to operator %AND: 

},|{ 2121 EQEQQQEE jiji ∈∈=∧  . () 

 Operation ∨ corresponds to operator %OR: 

2121 EEEE =∨ . () 
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We will explain effect of these two operations on a simple 
example. Let say that we have four terms a, b, c, d. Query 
(a %AND b) %OR (c %AND d) can be evaluated as 
follows: 

},{1 baQ = , },{2 dcQ = , },{ 21 QQE = . 

Therefore, search algorithm has to be applied on two 
simple queries and the final result is union of them. 
Alternatively, evaluation can be performed in the 
following way: 

}{1 aQ = , }{2 bQ = , }{3 cQ = , }{4 dQ = , 

}{ 11 QE = , }{ 22 QE = , }{ 33 QE = , }{ 44 QE = , 

)()( 4321 EEEEE ∧∨∧= . 
In either case, the final result of search procedure is the 
same. 
 
Extending query language by two operators (%AND, 
%OR) requires algorithm for parsing a query before 
search algorithm can be applied. Complex expressions 
like (a %OR b) %AND ((c %AND d) %OR e), for 
example, cannot be evaluated directly. We propose the 
following algorithm for performing this task: 
 
initialize S as empty stack of expressions; 
initialize empty set of search results R; 
 
foreach token w of query 
 switch(w): 
 case “(”,“%AND”,“%OR”: push w to S; 
 case “)”:  
  E<-evaluateTopExpression(S); 
  push E to S;  
 default:  
  if(previous token is term) 
   push “%AND” to S; 
  Q = {w}; 
  E = {Q}; 
  push E to S; 
 end switch; 
 
E<-evaluateTopExpression(S); 
foreach simple query Q from E 
 result = DBPF-k(Q); 
 add result to R; 
  
In the previously described algorithm, help function 
evaluateTopExpression is used to evaluate value of 
expression from the top of the stack. It is realized in the 
following way: 
 

6. CONCLUSION  
In this paper, we proposed an architectural solution for 
enhanced search through repositories of learning objects. 
Traditional textual search encountered in web browsers 
and text processing applications does not satisfy needs for 
data retrieval from learning object repositories mainly 
because it ignores existent explicit and implicit 
relationships among objects. In addition, a complex query 
with more words can result in an empty result set. As a 
solution to these problems, we proposed search based on 
finding top-k min-cost Steiner trees. 
 

In particular, we developed an algorithm for sparse 
weighted graph representation of a LO repository, which 
is suitable for application of algorithm for finding Steiner 
trees proposed in [11]. To further improve searching 
capabilities, we proposed extension of query language 
based on formal logic and designed an algorithm for 
parsing it. In order to keep simplicity, the extension is 
reduced to only two additional operators, which 
corresponds to logical AND and logical OR.  
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valuateTopExpression(S) 
{ 
initialize SH as empty stack; 
while (S not empty) 
 wh<-pop from S; 
 if(wh = “(”) 
  break; 
 push wh to SH; 
 
while (true) 
 first<-pop from SH; 
 if (SH is empty) return first; 
 operator<-pop from SH; 
 second<-pop from SH; 
 switch(operator) 
 case “%AND”: 
  result = first ^ second; 
 case “%OR”: 
  result = first v second; 
 end switch; 
 push result to SH; 
} 
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