

24

The Fifth International Conference on e-Learning (eLearning-2014),

22-23 September 2014, Belgrade, Serbia

TRENDS AND WAYS OF DEVELOPMENTS IN SOFTWARE

METHODOLOGIES AND PROGRAMMING LANGUAGES

MR TATJANA DAVIDOV

University of Novi Sad, Faculty of Economics in Subotica, tanja.davidov1@gmail.com

Abstract: Programming languages are developed from mechanical languages to the languages of higher level.

Languages which are orientated towards the object give out the totality of the software task, everything is contained in

the object which can support one iteration in developing a certain software solution. The agile approach mobilizes

flexible software into a unique developing project together with the frequent cooperation of the members of the project

team and clients in order to solve the problems of continually opened tasks of developing new software projects. The

agile development is supported by means of component development, upgrading it as partial software solutions which

rise the quality of the software task as well as the possible options of their solving and the productiveness of the IT

project to be accomplished faster and cheaper. Extreme Programming (XP), as a method of `agile development of

software`, implies, among the other facts, programming in pairs where all the members have a joint ownership of the

code and frequent direct communication with frequent direct communication with clients at the concrete given spot,

location of development.

Key words: extreme programming, XP, object, IT projects, objectively orientated programming, agile development of

software, components.

1. INTRODUCTION

Programming languages are a set of rules, instructions

which have a simple, single meaning meant to be given to

computers for solving certain programming tasks. They

are recognized directly by the computer hardware and can

be divided into three main groups:

 machine language, a simple programming language

which is internally used by the computer,

 symbolic language and

 high level language.

Machine and symbolic languages depend on

computers. High-level languages are mechanically

independent languages which use programming

instructions in natural, plain and simple words of English

language, whereas the operative system and the

architecture of the sole computer remains as a completely

independent category.

 According to the way of solving problems,

programming languages are divided into two categories

and they are the procedural and the objectively oriented

ones (OO). The procedural languages which have a

programming code, assign the computer a set of

instructions which may solve the problem and the

algorithm, serves as a means of describing how to solve

the given computing problem. This is the mode of

functioning of all known high-level programming

languages such as: Fortran, Cobol, Basic, Pascal, C as

well as machine dependent languages. Developing and

improving programming languages have been

implementing new methodologies such as advancing

interpreter that independently by its built-in procedures,

steps, solves the described problem. This is the feature of

the declarative or non-procedural language for the

purpose of writing inquiries (query) as it is the case with

the natural language SQL. The objectively oriented

languages (OO languages) represent a special class where

we can observe procedural and non-procedural elements.

In procedural languages the actions, ways of realizing

procedures and tasks are emphasize where the action

proccesses the data by performing the action onto the

given data. By the OO approach the programmer tries to

wrap, put the data and actions into the tool box

(framework) which has the main role in speeding up the

development of the software. Small Talk, Java and C# are

the best examples of OO languages. The great

manufacturers of software today have their own

programming packages such as Microsoft`s
®1

 set of

applications named Visual Studio Net with C#, currently

the most popular tool for fast development of an

application (Rapid Application Development - RAD).

This developmental surrounding contains a series of

redefined components, forms and wizards which all

together makes strong support to the development of

software through all of its phases. The new developing

surroundings and OO languages lessen the robustness of

the software. They divide the software into partial moduls

while the development of the software solutions is based

on the objects and interactive units which contain

complete functionality for the given programming task

implemented in themselves. The defined programming

task is repeated several times from one system into the

other which forms the mission of standardization of

independent software solutions. The development of the

ultimate Internet created the utmost need for the written

projects to operate in the same way, identicl in different

platforms (operative systems). When the OO

programming language Java was developed, programmers

found solutions and various possibilities of overcoming

problems connected with executing software applications

1 Microsoft is the protected brand of the Company

25

in numerous and different platforms. The comlex

development of software solutions was met with all sorts

of thinking, approaches in upgrading and its realizations,

ways of programming and methods of making software,

the architecture of the system. Historiclly looking, it

evolved from primitive to highly sofisticated and modern

developing techniques of creating software solutions as it

follows:

 writing programming codes - solving problems by

programming them until 1970 is also present

nowadays,

 structural methods of developing software: analysis

and projecting until 1985,

 development of software based on the models of data,

data base and the languages of the fourth generation,

since 1980,

 objectively oriented methods of development, since

1980 and

 standards - the UML model of segmental or

interactive development of software, since 1998.

2. WAYS OF DEVELOPING SOFTWARE

The traditional model of developing software was

popularized as a Waterfall Model. The origin of its name

is connected with the article of W. W. Royce which was

published in 1970. Royce presented the model of a

waterfall claiming that even such a rigid phase system

may be developed into a flexible interactive developing

process.

It supports all six phases which are developed in the

most stable way and undisturbed follow each other,

without skipping or shortening the phase tasks: analyses

of demands, design projecting, implementation, testing,

integration and maintenance. This model of developing

software has been used for years and is still applied for its

numerous advantages which are not to be neglected:

 better spent time in earlier phases may lead to

economical and more efficient work later,

 putting accent onto documentation and authentic

code of software products,

 makes progress linearly through discrete and easily

understood defined phases since it is rather simple,

 spots control places during the developing process.

Picture no. 1: Practical implementation of a Waterfall

model (literatura [5])

The experience of software teams, project and

software solutions tell us that such projects must be open

and ready to accept changes, taking into consideration the

fact that clients tend to change their demands. Regarding

the fact that OO programming promotes an object from

the outer world, as an independent programming unit,

where objects are shown and organized in a systematic

way making them logically understood and adaptable to

potential changes, specific demands, while supporting the

analyses of the leveled system. Thus, this model

contributes to the following:

 precise formation of the complete future structure of

the informatics, computing system,

 formal and logical projecting of the work frame of

the future system,

 creating operating tasks by stages according to the

objects and the project decisions,

 making the prototype of a new system,

 realistic and versatile evaluation of project decisions

in order to choose optimal (economic and productive)

solutions and,

 creating files of all the steps during the realization of

the new system.

The OO approach to the development of the software

solutions bonds the data and the processes into a single

logical unit which is defined as a class. In that way a part

of the software is isolated from the rest of the system

because the changes inside the class have no impact onto

the remaining parts of the system, classes in the system

itself. The independence of the class provides it with the

opportunity to be used in very many ways over and over

again in different applied platforms. In OO languages the

software is developed by the objective approach and ways

of thinking and that means the following connotations:

 there are no classical functions and procedures, just

objects,

 tasks are worked out in several smaller, less

developed separate steps,

 the work out goes from the top towards downside,

 data have a smaller role, impact compared to the

functions,

 fundament, the base of the initial development is

made of objects, not by functions and procedures,

 the object is an abstract element in the field of its

usage and application.

Picture no. 2: Iterative approach in developing software

solutions (Literatura [5])

This approach implies the iterative development. The

life cycle of the software contains iterations where each

iteration has an independent, separate software solution

according to the standard phases of its development:

analysis, design, programming and testing. The first few

phases promptly discover the risks and failures, and each

26

iteration is developed swiftly and fast from the beginning

to its end. In the course of its development each phase is

tested several times and integration of other solutions are

also possible in numerous software projects.

Different approaches in projecting software systems

that promote the leading experts such as: Jacobson, Booch

and Rumbaugh unite themselves into one and unique

process (Unified Process - UP). As the sponsor of this

methodology was the company Rational (well-known

software firm which deals with the development of CASE

tools) it is not surprising that this process was named

Rational Unified Process (RUP) and belongs to the group

of easy agile processes. The collaboration of the above

mentioned authors resulted in a unified modelling

language (Unified Modelling Language - UML) onto

which the RUP leans to. UML was developed in 1997 as

an approved standard by the Object Management Group –

OMG (Literatura [6]). UML is a standard language for

specifications, projects, visualizations, constructions and

recording projects of the software systems which are

developed by the means of OO technology. It is extremely

flexible and may be widely used in creating working,

operative tasks and it is not necessary for it to serve to the

objective oriented technology.

The strategic values of a software are rising in lots of

companies, the industry seeks for the techniques which

will transform the production of software into an

automatic process which will improve the quality of the

products and lessen the costs of the final product and help

it arrive onto the market faster. Such techniques are

developed by using component technologies, visual

programming, forms and frameworks. Companies are

constantly trying to increase their competences on the

market. The solutions which are of special interest are

those which refer to: physical distribution,

competitiveness, data replication, security, balancing of

the overloaded system and the tolerance of errors. UML is

designed to answer onto these and similar demands. UML

is a technique globally exploited for two main but

different developing ways, from the visual software

project solution to the programming code, in other words

it may be claimed that it forms the initial visual project

from the programming code. Projects have a detailed

graphic description of the system and it serves as a basis

for writing the programming code, while some of them

even generate parts of the code. In the prototype

developing of the software CASE tools are used for the

realization of initial visual project solutions. UML

generalizes programming of project solutions in several

steps:

 visualization of the system, presenting its outlooks,

 specification of the system, its structure and behavior,

 files and records of the project decisions.

3. NEW DEVELOPMENT

METHODOLOGIES

The methodology for developing a software is a

complex sum, number of procedures which provide

advantages during the development:

 consistent approach lessens the risk of errors,

 complete documentation for the current and future

projects is written down,

 quality of the software is regarded high if the

solution is agile and susceptible to changes,

 changes of the project teams are also a common

practice, experience and knowledge are decisive in

choosing the best members,

 visual modelling is easier and so is adapting

compared to searching for programming code or

changing it.

Nowadays, the agile process which is more and more

present is the adaptive one. It was invented in Utah, USA,

in 2001. The most important agile methods are: Scrum,

XP, Open UP, Crystal, Lean, DSDM and Agile MSF.

This process of development is more adaptive, agile and

the cooperative work of the team members working on

developing software solutions becomes more effective.

Agile methods are based onto four main principles:

 people and their relationships are much more

important than the process and the tools,

 software functioning comes before recording its

documentations, which is not of the greatest

importance,

 cooperation with the final consumers is more

important than immediate negotiations of working

tasks,

 response onto necessary changes and computing

tasks are far more important than planning steps and

activities.

Generators of application prototype serve for

generating the authentic code in OO language. Such a

prototype represents a client`s application which by the

means of the protocol for the base connection (Open

Database Connectivity - ODBC) communicates with the

server for the distance, relation database. These tools are

especially suitable for a fast development of the system,

since they create the user`s interface, state precisely the

outlooks of the screen and the format of the user`s reports.

Since the class is the main term of the objective

development and projecting, class diagrams are mostly

used in describing the structure system which is being

developed. Characteristics and operations are terms used

for describing the class features. UML, as a complex

language, contains a great number of diagrams, which in a

certain phase of modelling are used. They are also

strongly connected with the process of creating a

software. The generator of the programming code has a

number of generators for various different purposes. SQL

generator produces a project and implements its outline

for the database. In accordance with the standard syntax,

nonprocedural SQL language generates the programming

code which contains all the commands for executing the

following programming operations:

 creating tables,

27

 declaring limitations in the form of primary and

strange keys,

 declaring limitations and permissions which are in

relation to the value of the zero traits,

 declaring limitations in the form of the referential

integrity, in the case of its violation, generating the

mechanism to returning the database into its

consistent state,

 creating triggers and procedures for controlling

limitations in relations, if the situation allows the

usage of the SQL language in the given problematic

case.

The previously described generators of the

application prototypes served as an example for software

possibilities and they led us to the conclusion that it is

extremely productive to develop a generative component

which is able to generate the demands of the system, the

database and the final users. In the domain of the Visual

studio, by the objective approach, the software component

was developed for generating applications of which the

diagram class is described in few spots of the iterative

development.

The main, entrance spot is in the component of the

MasterDetailControl. In order to make the memorandum

(master/detail) control to generate all of its fields, the

parameters for connecting the database is its priority, and

they are the name of the server and the database. These

parameters are sufficient if the Windows authenticity is

used. By the means of these parameters, the control board

finds the tables of the database and offers the possibility

to choose options out of the Master table. From the

information scheme we get data on the chosen table such

as the names and types of the columns, primary and

strange keys, tables, details, etc. The user chooses this

data on the bases of defined terms, the values of the fields

are generated as well as the labels, connections among the

tables, visual and functional description of the fields and

such options in connection with the fine adjusting of the

way how the model looks like. When it comes to the

implementation, everything is in the class of

MasterDetailControl. The class DataSet exists as an

attribute in the MasterDetail Class and it reads the tables,

attributes and all the rest of date from the tables.

Everything the user does has an impact onto the data

stored and saved in the DataSet. Only after clicking onto

the DataSet, it synchronizes the data with the previously

saved data. The fields, forms, master and detailed tables

are all connected in the corresponding columns in the

DataSet and by their editing they are written down, copied

into the DataSet automatically. The diagram class

MasterDetailControl – the component which generates the

cipher reader and other documents such as the

memorandum/items are shown on the following picture:

Picture no. 3: Class Diagram of MasterDetail Control client/server components

4. NEW METHODOLOGIES CREATE

REUSABLE VALUES

A different approach to the development of software

by the means of agile software methodologies, such as the

Extreme Programming (XP), one of a several fast and

agile methodologies, gives us the opportunity to adjust

swiftly to the changes in the informational demands,

during the process of developing the project. Because of

all the above mentioned facts, it is more realistic and

accessible than the previous ones which insist on

defining, stating all the demands at the beginning of

developing the project. The constant interaction between

the clients and the members of the developing team leads

to a high-quality ending of the work, cutting down the

costs, continual management of the demands of the clients

and absolute flexibility in developing the system. Extreme

Programming is a model of developing a software

especially for small and medium-sized developing teams

which are constantly exposed to permanent fast and

changeable developing activities and demands of the

informatics systems. XP offers a great number of

formalized solutions which are defined in: programming

in pairs, unit testing, refactoring, steady changes

according to the new demands, architecture, as well as

frequent and repeatedly short iterations which are fully

28

developed. Such a quick answer onto these rules of the

extreme logic in programming is widely supported by the

application of the component development of the

software, where each component represents a built-in

system unit which functions separately but may be also

integrated into a complex system of the complete software

solution. This solution is safe, agile and adaptive, flexible

and may be easily adjusted to the system and clients`

demands, reliable and accurate, tested and previously

used several times.

Software is goods which does not have amortization.

Once it is created, without greater oscillations and on the

top-quality hardware platform, may last a long period of

time, with the exception of its obsolescence (new

operative systems, more perfect, sophisticated and

comfortable platforms for developing and maintaining the

software, more rational approach to the database, better

modern interfaces and reports, etc., in fact, it is relatively

questionable and non-objective to discuss what an iternal

or obsolete software means). The growth and the

development of a software have taken the precedence in

the industry of the XXI century by their agile approach to

the development and improvement and their only

limitations are in the human ambitions. Components, as

priorities in developing software systems, are made on a

three syllabic architecture. The users` interface is

separated from the business logic and the layer of the

data. Such a solution enables reusable functions:

 User interface layer – graphical user interface -

(GUI),

 Business layer – business logic layer - (BLL):

• Process components – local business

functionality,

• Business domain components – functionality of

business processes,

• Business infrastructure components –

functionality of business domains.

 Technical infrastructure layer – serves to business

components - layer which enables access to the data,

their physical accommodation onto the server disc of

the database (data access layer - DAL).

Picture no. 4: Layers of Component Architecture

(Literatura [5])

The component architecture is flexible, contains the

complete solution, key components and subsystems,

mechanisms of its integration and realization, integrated

solution, the communication of its mutual processes and

the formulae for executing certain tasks. This architecture

performs the following tasks:

 divides tasks in the project team,

 maintenance and spotting the possible ways of

expanding, spreading,

 estimates the profitability of the reuse or makes it

possible for wider use,

 makes choices among thousands of ActiveX and Java

components and,

 increasing evolution of the existing software.

In the applications of the Microsoft Windows

developing surroundings, control elements or components

are defined as programming units which perform

incoming and outgoing operations. As a part of the

developing project, controls are in the form of a dialogue

or a pattern where they serve to all users, members of the

project developing team, programmers and may be used

in each application of the framework Dot Net. Most of

these components are in the library of standard control

boards. The library was created for the need of making

the users` surroundings apt and persistent to the standards

where the control was defined in advance (Predefined

controls) or to fit classes of the framework Dot Net. The

methodology of making programming systems based on

the components (Component-Based Scalable Logical

Architecture - CSLA), by the author Rockford Lhotka

[Lhot98], has very detailed instructions in the project

domain whereas it is more simple and general in the

domain of analyzing the demands. It is well oriented

according to the Microsoft technologies, with the aim of

multiple reuse of the programming components in

different work frames and the users` interfaces

(client/server architecture, Web platform). Lhotka

components are divided into three categories: components

for general purposes (standard components), components

created for a specific aim for a single application and

components made for a specific purpose for just one type

of industry.

The created software components, or as we popularly

call them R values, are approved my certain number of

international component standards, are added to the

library of the software components where their formal

list, classification and outlooks, features are described in

full detail. When the R values are described in this way,

they become a part of the licensed list of the other R

values which are already in the library of the software

components. The users of the software components, on

the basis of the detailed, precise description of the R

values, its grades, may understand and estimate if such a

R value was suitable for them and their needs. The

description of a single R value contains technological and

informational elements which are presented, clearly

shown to the users in a uniform, previously stated

schemes. These values are greatly used in creating

systems and software goods (applications), or

modifications of the existing ones. On the industrial

market they are being sold as any other type of goods

which has its usage and cost. According to the given

description of its components, the buyer is responsible for

choosing one in order to use it in an appropriate way. The

users choose these components which are easy to be

adjustable to their tasks and problems which have to be

solved. Making the right choice is not an easy task

because of the individual and creative character in the

process of developing the system, its surroundings,

differences in which the values are being accepted, its

29

software and especially since there is not a “formal

recipe“ for choosing the right component.

Each component must have a simple, clear and lucid

design of the total developing environment, the controls

in the system and all of these must be easily understood

by all the members of the project developing system,

whereas the component solutions must show a clear

picture of the system to each category of the users.

A generative software component was formed in this

research and it has a complete model of the demands and

the design which generates software applications. Its

usage is equalized according to the needs of the final

consumers, the architecture of its development is unique,

it is easy to be used by all the members of the project

developing team. The component executes all the

appropriate tasks, while the users` design and its

functionality is completely understood to everyone. The

quality is proved by its wide-spread and multiple

implementations and direct testing of them, while its

standard developing architecture lessens major technical,

formal and functional risks from the very start.

Picture no. 5: Generating master form from the

database table

The generative components which perform different

functions are perspective software solutions and have a

major, leading role in developing projects with the aim to

form new applications founded on powerful technical and

methodic approach which, at the same time, are adaptive,

simple and fast in accessing the development of the

applicative software understood and accessible to

everyone. The high level of the economic justification of

component solutions originates from the possibilities of

their multiple application. The OO generative component

is a software tool which makes a new applicative

software. Creating new applications means lots of new

tasks and repeated activities on designing a user`s

interface, menu, forms, reports and accesses to the

database. Thus, the automation of executing all the

mentioned and similar operations is a generative tool for

producing a brand new applicative software. Its practical

application helps the programming teams to develop

different domains in creating automatic ways of

developing new applications. In that way business tasks

are solved quickly and easily while saving money, time,

materials and human resources.

5 CONCLUSION

Agile methods of developing software put a great

emphasis onto the communication among the people who

make projects, programmers and final consumers, clients.

They solve concrete defined tasks and give answers onto

the current and frequent changes in the field of

informatics and computing demands. In that way the

newly created software solution becomes completely

adjusted to the needs and expectations of its client. The

phases in projecting, developing tasks and solutions

together with the documents and recordings, are not

priority. They are all formally a less important segment of

the final, improved product. Agile methods have a lot of

positive features, but there are also inevitable problems as

in many other methodological approaches. The agile

development by strict rules cannot and should not be

formalized since it is unpredictable how the clients and

members of the project team will behave. The roles of

both sides in this case are extremely emphasized. Clients

make great effort, the project documentation and files are

also great, sometimes it is not fully defined, precise and

clear what clients expect. The legal side of the project and

its documentation may not be adequate expressed since

the agile contracts are without full, legal formalities. So,

there is no way to cover all the legal problems on both

sides. But one thing is in common and it is speed. Time

and mutual trust is of great significance. The problem of

functional spots and the budget still represent the

cornerstone of the future agreement. The agile team is

always expected to adjust itself continually which creates

new changes in developing the project, and makes it hard

to meet the deadlines. If the project and the team

responsible for its development are both agile, one

question has the utmost importance: what is the real time

needed for finishing the project and what is the real cost

of the software? The clients themselves have to be agile

and flexible especially when it comes to terms of

finishing the project, paying the costs and implementing

the software. However, the application of the agile

methods in developing software greatly contributes in

raising the level of quality and the productiveness of the

IT projects.

LITERATURE

[1] James Shore and Shane Warden, Agile Development,

O’Relly, USA, 2007.

[2] Andy Ju An Wang, Kai Qian, Component-Oriented

Programming, Hardcover,USA, 2005

[3] John Cheesman John Daniels, UML Components: A

Simple Process for Specifying Component-Based

Software, Paperback, USA, 2000

[4] MSF for Agile Software Development Process

Guidance:

http://www.microsoft.com/downloads/details.asp

x?FamilyId=9F3EA426-C2B2-4264-BA0F-

35A021D85234&displaylang=en

[5] Prof. Ph.D. Angelina Njeguš, Information Systems Design,
(Projektovanje informacionih sistema) Singidunum

University, Belgrade, 2009/2010.

[6] OMG international UML standard which represents the unified
standardization in modelling, “the Unified Modeling
Language”™ (UML®), http://www.omg.org/

http://www.amazon.com/Andy-Ju-An-Wang/e/B001H9PHWE/ref=dp_byline_cont_book_1
http://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&field-author=Kai+Qian&search-alias=books&text=Kai+Qian&sort=relevancerank
http://www.amazon.com/John-Cheesman/e/B0034OFATA/ref=dp_byline_cont_book_1
http://www.amazon.com/John-Daniels/e/B004LT9SSG/ref=dp_byline_cont_book_2
http://www.microsoft.com/downloads/details.aspx?FamilyId=9F3EA426-C2B2-4264-BA0F-35A021D85234&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=9F3EA426-C2B2-4264-BA0F-35A021D85234&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=9F3EA426-C2B2-4264-BA0F-35A021D85234&displaylang=en
http://www.omg.org/

