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Abstract: Semantic web technologies brought to the desktop by the Nepomuk
1
 project can prove to be useful in design of 

the next-generation e-learning systems due to a high level of data interchangeability between different components of 

the system and programs. In this article, we will present one of the potential applications of the so called “semantic 

desktop” when applied to usage behaviour and document classification. This research is implemented as a part of the 

KDE Contour system and has been successfully tested in real-world environment. 

Keywords: Semantic desktop, literature classification, usage statistics 

 

                                                           
1  “NEPOMUK : Networked environment for personal ontology-based management of unified knowledge” - EU sponsored project 

for developing a comprehensive solution for extending the personal desktop into a collaboration environment. The project's website 

is  located at: http://nepomuk.semanticdesktop.org/ 
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1. INTRODUCTION  

Current LMS (Learning Management System) 

developments focus on the best way to allow the 

administrator (teacher) to classify the literature for the 

user (students) to be able to have a complete control over 

the learning process. 

 

This can be considered a good solution for the studies that 

don’t involve doing any research on the subject as a part 

of the learning process, but to learn only what was already 

prepared as a part of the curriculum. For more advanced 

levels like the masters degree or a doctorate, this approach 

falls short. The reason for this is that the LMSs can not 

track external literature the user obtained without the help 

of the LMS. 

 

The second issue with most present LMSs is that the 

classification needs to be done manually – either by an 

administrator, or by the user. Even if the LMS allows the 

user to add literature it adds an unnecessary step for a 

student researcher which breaks the natural flow of 

learning. 

 

Document grouping is an important part of the system 

since it makes it easier for the student (or the teacher) to 

search and navigate the collection of literature. The 

proposal here is to implement a global operating system-

wide user tracking mechanism built on the semantic 

desktop technologies, to be able to deduce which 

documents are important to the user and to be able to 

automatically group those that relate to each other. 

Although the algorithms can be applied inside a LMS, 

their true potential lies in analysis of completely 

unstructured data. 

2. AUTOMATIC CLASSIFICATION 

There are two main approaches to document 

classification. The first is based on the document content. 

That is, all the data like words, images, references need to 

be indexed and then some classification algorithm like 

TF-IDF or Okapi BM25F[1] (used in Lucene) can be 

applied. 

 

In our case, the user doesn’t expect the documents to be 

necessarily grouped based on the content, but rather on 

the relations she sees between them. Those relations can 

largely be deduced based on the usage statistics. 

3. RECORDED EVENTS 

In order to be able to explain the algorithms involved, 

some understanding of the required OS-wide 

infrastructure is needed. There needs to be a service that 

records the usage events sent by the applications or the 

desktop environment. Namely, the following types of 

events: 

 

1. Accessed – document was accessed for an 

unknown interval of time 

2. Opened–Closed – document was open for a 

specific interval of time 

3. Focussed in–Focussed out – document had the 

user’s focus (only one document can have the 

focus at a given time) 

4. Modified – changes to the document were saved 

at some point in time 

 

The usage events are explained in-depth in Appendix 1. 

 

 

4. GROUPING BASED ON USAGE 

STATISTICS 

Brute-force. One way of deciding which documents are 

related would be to sort them by the number of times they 

were open at the same time. 

 

This approach has two significant disadvantages. The first 

is the complexity of searching for all usage events that 

have the similar timestamps and summing them to 

calculate the score – O(n
2
) where n is the number of 

recorded events, which is usually quite huge. 

 

And the second is that this approach can spot only the 

direct connections between documents. 

 

Simple linking. The alternative approach, as proposed by 

Chirita and Nejdl[2], would be to create links between 

documents that are accessed in sequence. So, for example, 

if the user opens a web page A, and then a file B, the 

system should create a A→B ink between them, with a 

weight coefficient representing how many times the A→B 

event was registered. 

 

While this provides a very efficient ranking method, it 

doesn’t use any contextual information and doesn’t work 

in cases where the user opens one main file A, then opens 

B and C that are related to it. Instead of linking A→C it 

will link B→C which is a mistake in a learning 

environment since most subjects have one essential 

document, and then the less important ones are related to 

it, not that much related to each other. 

5. GRAVITY-BASED GROUPING 

The algorithm proposed here is based on the “brute-force” 

idea, but with a significantly smaller search space. The 

general idea is to find the most important documents, and 

then calculate how other documents relate to those. The 

justification of this approach is exactly what was the 

problem with using the “simple linking” algorithm in a 

real-world e-learning environment – the user has a couple 

important documents for each exam (main literature, 

paper or a presentation he is writing etc.) and a lot of less 

important ones that are tied to the aforementioned 
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(referenced papers, specific algorithm implementations, 

related images etc.). 

 

Document importance quotient. First of all, we need to 

be able to tell which documents are important to the user. 

For that, we need a scoring formula that fulfils the 

following criteria: 

 

1. If a document A has been opened more times 

than B, it should have a higher score; 

2. The longer the document was kept open, the 

higher score it should receive; 

3. The longer the document had the focus, the 

higher score it should receive; 

4. The importance of a document should deteriorate 

with time if it has not been used. 

 

Lets define the document importance quotient S as: 

 (1) 

Where di is time passed since the i
th

 event happened, ki is 

coefficient depending on the type of the event, and li is the 

time length of the event. 

 

In the case of the “Accessed” and “Modified” events, 

which don’t have the time length like “Opened – Closed” 

and “Focussed in – Focussed out” do, li can be replaced 

by a predefined constant. The actual values of the 

constants can be tweaked to achieve the desired 

importance for the diff erent events, and to set the speed 

of time-deterioration. 

 

It is trivial to check that this formula has all the required 

attributes. What’s more, the system doesn’t need to 

calculate the whole sum on every new event, it just needs 

to process the events that happened since the last time the 

score was updated. 

 (2) 

where d is the time passed since the last score update. 

 

It is worth noting that the calculated score is the score at 

the time of calculation. After that, the score starts 

deteriorating, so to obtain the current score at any given 

time, the following formula can be used: 

 (3) 

where d is the time passed since the last score update. 

 

TL algorithm. Let D be a set of all documents. A 

simplified version of TL algorithm goes as follows: 

 

1. Sort the documents in D by score, descending 

2. Calculate Lk – a set of k documents that have a 

significantly higher score than the others. Note 

that k should be kept significantly smaller than  

|D| 

3. For each di in in Lk (i = 1, ..., k), create a new 

group Gi that contains only di 

4. For each document group Gi, find all the 

documents in D that have been used at the same 

time as any of the documents in Gi, and add them 

into Gi 

5. Repeat the previous step while  

6. Check the similarities between the resulting 

groups, and merge groups that contain mostly the 

same documents. 

 

Remarks. The algorithm above doesn’t need to finish, 

there is a possibility that the condition in the step 5 will 

never be met. In practice, it is sufficient to limit the 

repetition of the step 4 a predetermined number of times 

(for example, three times), eff ectively removing the 

potential endless loop. Alternatively, the loop can be 

ended also when no new documents have been added to 

any of the groups in the last iteration. 

 

Step 4 can be optimised even further by only finding all 

documents in D that have been used at the same time as 

the high scored documents added to Gi in the previous 

step. Mind that when Gi has more items, it is possible to 

make a time-interval union of all events for those 

documents, and not process each one individually. 

 

Pros and cons. The first benefit over the “brute-force” 

algorithm is the speed. Instead of analysing every pair of 

documents in D, it analyses only pairs that contain 

highest-scored documents. This number can usually be 

kept lower than eight per subject. 

 

The second benefit is that it detects indirect connections 

with connection chains that have the length up to how 

many times the step 4 was repeated. Whats more, if we 

add the contextual information of in which iteration a 

document was added to Gi, we can get a nice hierarchical 

organisation in each of the groups. It also detects groups 

that have more than one highest-scored documents. 

 

The main flaw of the TL algorithm is that it doesn’t keep 

the connection information between documents once 

those are inserted in a group. If this is a desired feature, 

instead of repeating only the step 4, the whole algorithm 

can be repeated for each group. This way the main groups 

will be divided into subgroups, subgroups divided further, 

etc. thus retaining all the hierarchical information. 

6. APPENDIX 1 – STANDARD ONTOLOGIES 

AND QUERIES USED 

The whole system is implemented on well established 

semantic technologies like RDF and Nepomuk. Most of 

the ontologies used are a standard defined by the 

Nepomuk project. Everything else is well-defined in a 

publicly available KEXT ontology. The relevant parts of 
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the ontologies are presented here in TriG
2
 format, while 

the queries are in written in SPARQL
3
. 

 

One of the consequences of using semantic web 

technologies is that a document, as the term is used in this 

paper, can be any RDF resource – that is, anything that 

has an URI – be it an image, a web page, a person, a 

message or even an application. 

 

Document usage events. As already stated, the usage 

statistics are collected in a dedicated system service. An 

application can report events to the service in three levels 

of detail. 

 

Level 0. The lowest level is to report only that a 

document was “Accessed” by a certain application, 

without any other details. 

 

For example, the user clicks a PDF file in the file manager 

which in turn opens that file in a PDF reader. The file 

manager can send an event that the file was accessed by 

the PDF reader. This level should be implemented by the 

parts of the workspace, the desktop environment – normal 

applications should implement at least Level 1. 

 

Level 1. This level provides more fine-grained events 

such as “Opened”, “Closed” and “Modified”. 

 

This way, the system will know for how long a document 

was kept open and whether it was edited or just read. 

Applications like the file manager from the above 

example can’t register these events since those don’t have 

the way of telling when the document was closed. 

 

Level 3 contains “Focussed in” and “Focussed out” 

events which can tell the service that the document in 

question actually had the keyboard input, and wasn’t 

minimized or located under some other document. 

 

Ontology. The events are modeled in the NUAO
4
 as sub-

classes of nuao:DesktopEvent. The “Accessed” and 

“Opened – Closed” events are modelled with 

nuao:UsageEvent. In the case of “Accessed”, the start 

time (nuao:start) and end time (nuao:end) are the same. 

 

The focus events are modeled with nuao:FocusEvent that 

is registered as a child of the bigger nuao:DesktopEvent. 

The same is true for the “Modified” event with a single 

diff erence that it has no duration, but only the timestamp 

of the modification. 

 

Although the events are well defined in the ontologies 

developed in the Nepomuk project, the structures for 

remembering the calculated document scores are not. 

                                                           
2 TriG is a machine and human readable syntax for serializing 

Named Graphs and RDF datasets developed at Freie Universität 

Berlin, the specification is available at http://www4.wiwiss.fu-

berlin.de/bizer/TriG/ 
3  SPARQL is a W3C standard language for querying RDF 

available at http://www.w3.org/TR/rdf-sparql-query/ 
4  NUAO – Nepomuk User Action Ontology is avaliable at 

http://oscaf.sourceforge.net/nuao.html 

These, along with the information about the classes are 

defined in the KEXT (KDE extensions) ontology. 

 

The main item in the ontology is the so called Activity 

which, in the context of an e-Learning environment can 

be considered to be a class, or some specific part of the 

class if it covers more disjunctive topics. 

 

kext:Activity 

 a rdfs:Class ; 

 rdfs:subClassOf rdfs:Resource ; 

 rdfs:label "activity" . 

 

An activity has an id (kext:activityIdentifier), and other 

properties like the name and icon inherited from 

rdfs:Resource. Each event is stored with the information 

about the activity it belongs to. The property that links 

events (and other types of resources) is kext:usedActivity: 

 

kext:usedActivity 

 a rdf:Property ; 

 rdfs:label "used activity" ; 

 rdfs:comment "The activity that was active when 

  resource was created. This is mostly 

  used for graphs or desktop events." 

 rdfs:domain rdfs:Resource ; 

 rdfs:range kext:Activity ; 

 nrl:maxCardinality 1 . 

 

The calculated cache is stored in instances of the 

kext:ResourceScoreCache class: 

 

kext:ResourceScoreCache 

 a rdfs:Class ; 

 rdfs:subClassOf rdfs:Resource ; 

 rdfs:label "Resource score cache" ; 

 rdfs:comment "For storing the automatically 

  calculated score based on the usage 

  statistics" . 

 

Each cache is unique for the triple (resource, activity, 

agent). Resource (the document) is stored in the 

kext:targettedResource, the agent (application that opened 

the document) in kext:initiatingAgent and the activity is 

stored in the previously defined kext:usedActivity. The 

actual score is stored as kext:cachedScore and nao:score 

(Nepomuk Annotation Ontology
5
 namespace). 

 

kext:targettedResource 

 a rdf:Property ; 

 rdfs:comment "Resource for which the score 

  is calculated." ; 

 rdfs:domain kext:ResourceScoreCache ; 

 rdfs:label "resource" ; 

 rdfs:range rdfs:Resource . 

 

kext:initiatingAgent 

 a rdf:Property ; 

 rdfs:comment "Relates the score to the agent 

  initiating the events." ; 

                                                           
5  NAO – Nepomuk Annotation Ontology – 

http://oscaf.sourceforge.net/nao.html 
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 rdfs:domain kext:ResourceScoreCache ; 

 rdfs:label "involved agent" ; 

 rdfs:range nao:Agent . 

 

kext:cachedScore 

 a rdf:Property ; 

 rdfs:subPropertyOf nao:score ; 

 rdfs:comment "The automatically calculated 

  score" ; 

 rdfs:domain kext:ResourceScoreCache ; 

 rdfs:label "calculated score" ; 

 rdfs:range xsd:float . 

 

Score calculation. The score is calculated by retrieving 

all events that haven’t yet been processed with the next 

query: 

 

select distinct ?r where { 

 ?r a nuao:DesktopEvent . 

 ?r kext:usedActivity <activity> . 

 ?r nuao:targettedResource <document> . 

 ?r nuao:initiatingAgent <application> . 

 ?r nuao:end ?end . 

 FILTER(?end >= <lastModifiedTime>) . 

} 

 

And for each of the resulting events, the score is increased 

like this (C++ code): 

 

score += ::exp(- days / 32.0) * intervalLength / 60.0; 

 

TL algorithm. As previously stated, the first step of the 

algorithm is to get the highest scored documents with the 

following SPARQL query, and from the resulting list to 

only select only those that have a significantly higher 

score than others. 

 

select distinct ?resource, 

    ( 

        ( 

            SUM ( 

                ?lastScore * bif:exp( 

                    - bif:datediff(’day’, ?lastUpdate, 

                    currentDateTime) 

            ) 

        ) 

    ) as ?score 

) where { 

    ?cache kext:targettedResource ?resource . 

    ?cache a kext:ResourceScoreCache . 

    ?cache nao:lastModified ?lastUpdate . 

    ?cache kext:cachedScore ?lastScore . 

    ?cache kext:usedActivity <activity> . 

} 

GROUP BY (?resource) 

ORDER BY DESC (?score) 

 

For each of the resulting documents, an instance of a 

kext:UsageGroup is created. Each group is divided into 

layers (kext:UsageGroupLayer) – one layer per algorithm 

iteration. The iteration number in which the layer is 

created is stored as kext:layerOrder. 

 

kext:UsageGroup 

 a rdfs:Class ; 

 rdfs:subClassOf rdfs:Resource ; 

 rdfs:label "Resource group" ; 

 rdfs:comment "A group of resources that are 

  used together" . 

 

kext:UsageGroupLayer 

 a rdfs:Class ; 

 rdfs:subClassOf rdfs:Resource ; 

 rdfs:label "Layer of the resource group" ; 

 rdfs:comment "A group of resources that are 

  used together with the resources 

  from the previous layer" . 

 

kext:layerOrder 

 a rdf:Property ; 

 rdfs:comment "The order of the layer 

  in a group" ; 

 rdfs:domain kext:UsageGroupLayer ; 

 rdfs:label "layer order" ; 

 rdfs:range xsd:int . 

 

Every kext:UsageGroupLayer is linked to the  

kext:UsageGroup it belongs to via the nie:isPartOf  

(Nepomuk Information Element namespace) property, 

just as is every document is to the corresponding 

kext:UsageGroupLayer. 

 

In order to retrieve only the documents that belong to only 

one layer, as used in the TL algorithm, the following 

query is suficient: 

 

select ?document where { 

 ?document nie:isPartOf ?layer . 

 ?layer kext:layerOrder "<level>"^^xsd:int . 

 ?layer nie:isPartOf <group> . 

} 

 

To retrieve all documents that belong to a group, 

regardless of the layer, the following can be done: 

 

select ?document where { 

 ?document nie:isPartOf ?layer . 

 ?layer a kext:UsageGroupLayer . 

 ?layer nie:isPartOf <group> . 

} 

 

We didn’t need to specify the type of ?layer in the former 

query since kext:layerOrder is defined only on 

kext:UsageGroupLayer instances. 

7. CONCLUSION  

Semantic web and related technologies have recently had 

a lot of impact on the e-Learning environments. While 

most of these developments need an explicit effort from 

the content creators to insert RDF meta-data into lectures 

or other kinds of documents, or to create RDF-triples 

linking the documents together, this can sometimes be 

done automatically from the gathered usage-statistics. 
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This paper presented a rather efficient way of doing this 

by recognizing the important documents and grouping the 

less important ones around them. 

 

Apart from helping in navigation through vast amounts of 

data, this approach allows the lecturers to retrace the 

students' usage patterns to be able to see to which topics 

they gave too much or too little attention, to see what 

literature should be added to the default setup for the 

exam and how those should be grouped in the LMS. 
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