
The Second International Conference on e-Learning (eLearning-2011), 29-30

September 2011, Belgrade, Serbia

ALGORITHM FOR AUTOMATIC CLUSTERING OF LEARNING MATERIALS BASED

ON THE USAGE STATISTICS

IVAN ČUKIĆ

Faculty of Mathematics, University of Belgrade;

Mathematical Institute, Serbian Academy of Sciences and Arts;

basysKom GMBH, Darmstadt, ivan@math.rs

Abstract: Semantic web technologies brought to the desktop by the Nepomuk
1
 project can prove to be useful in design of

the next-generation e-learning systems due to a high level of data interchangeability between different components of

the system and programs. In this article, we will present one of the potential applications of the so called “semantic

desktop” when applied to usage behaviour and document classification. This research is implemented as a part of the

KDE Contour system and has been successfully tested in real-world environment.

Keywords: Semantic desktop, literature classification, usage statistics

1 “NEPOMUK : Networked environment for personal ontology-based management of unified knowledge” - EU sponsored project

for developing a comprehensive solution for extending the personal desktop into a collaboration environment. The project's website

is located at: http://nepomuk.semanticdesktop.org/

55

http://nepomuk.semanticdesktop.org/

The Second International Conference on e-Learning (eLearning-2011), 29-30

September 2011, Belgrade, Serbia

1. INTRODUCTION

Current LMS (Learning Management System)

developments focus on the best way to allow the

administrator (teacher) to classify the literature for the

user (students) to be able to have a complete control over

the learning process.

This can be considered a good solution for the studies that

don’t involve doing any research on the subject as a part

of the learning process, but to learn only what was already

prepared as a part of the curriculum. For more advanced

levels like the masters degree or a doctorate, this approach

falls short. The reason for this is that the LMSs can not

track external literature the user obtained without the help

of the LMS.

The second issue with most present LMSs is that the

classification needs to be done manually – either by an

administrator, or by the user. Even if the LMS allows the

user to add literature it adds an unnecessary step for a

student researcher which breaks the natural flow of

learning.

Document grouping is an important part of the system

since it makes it easier for the student (or the teacher) to

search and navigate the collection of literature. The

proposal here is to implement a global operating system-

wide user tracking mechanism built on the semantic

desktop technologies, to be able to deduce which

documents are important to the user and to be able to

automatically group those that relate to each other.

Although the algorithms can be applied inside a LMS,

their true potential lies in analysis of completely

unstructured data.

2. AUTOMATIC CLASSIFICATION

There are two main approaches to document

classification. The first is based on the document content.

That is, all the data like words, images, references need to

be indexed and then some classification algorithm like

TF-IDF or Okapi BM25F[1] (used in Lucene) can be

applied.

In our case, the user doesn’t expect the documents to be

necessarily grouped based on the content, but rather on

the relations she sees between them. Those relations can

largely be deduced based on the usage statistics.

3. RECORDED EVENTS

In order to be able to explain the algorithms involved,

some understanding of the required OS-wide

infrastructure is needed. There needs to be a service that

records the usage events sent by the applications or the

desktop environment. Namely, the following types of

events:

1. Accessed – document was accessed for an

unknown interval of time

2. Opened–Closed – document was open for a

specific interval of time

3. Focussed in–Focussed out – document had the

user’s focus (only one document can have the

focus at a given time)

4. Modified – changes to the document were saved

at some point in time

The usage events are explained in-depth in Appendix 1.

4. GROUPING BASED ON USAGE

STATISTICS

Brute-force. One way of deciding which documents are

related would be to sort them by the number of times they

were open at the same time.

This approach has two significant disadvantages. The first

is the complexity of searching for all usage events that

have the similar timestamps and summing them to

calculate the score – O(n
2
) where n is the number of

recorded events, which is usually quite huge.

And the second is that this approach can spot only the

direct connections between documents.

Simple linking. The alternative approach, as proposed by

Chirita and Nejdl[2], would be to create links between

documents that are accessed in sequence. So, for example,

if the user opens a web page A, and then a file B, the

system should create a A→B ink between them, with a

weight coefficient representing how many times the A→B

event was registered.

While this provides a very efficient ranking method, it

doesn’t use any contextual information and doesn’t work

in cases where the user opens one main file A, then opens

B and C that are related to it. Instead of linking A→C it

will link B→C which is a mistake in a learning

environment since most subjects have one essential

document, and then the less important ones are related to

it, not that much related to each other.

5. GRAVITY-BASED GROUPING

The algorithm proposed here is based on the “brute-force”

idea, but with a significantly smaller search space. The

general idea is to find the most important documents, and

then calculate how other documents relate to those. The

justification of this approach is exactly what was the

problem with using the “simple linking” algorithm in a

real-world e-learning environment – the user has a couple

important documents for each exam (main literature,

paper or a presentation he is writing etc.) and a lot of less

important ones that are tied to the aforementioned

56

(referenced papers, specific algorithm implementations,

related images etc.).

Document importance quotient. First of all, we need to

be able to tell which documents are important to the user.

For that, we need a scoring formula that fulfils the

following criteria:

1. If a document A has been opened more times

than B, it should have a higher score;

2. The longer the document was kept open, the

higher score it should receive;

3. The longer the document had the focus, the

higher score it should receive;

4. The importance of a document should deteriorate

with time if it has not been used.

Lets define the document importance quotient S as:

 (1)

Where di is time passed since the i
th

 event happened, ki is

coefficient depending on the type of the event, and li is the

time length of the event.

In the case of the “Accessed” and “Modified” events,

which don’t have the time length like “Opened – Closed”

and “Focussed in – Focussed out” do, li can be replaced

by a predefined constant. The actual values of the

constants can be tweaked to achieve the desired

importance for the diff erent events, and to set the speed

of time-deterioration.

It is trivial to check that this formula has all the required

attributes. What’s more, the system doesn’t need to

calculate the whole sum on every new event, it just needs

to process the events that happened since the last time the

score was updated.

 (2)

where d is the time passed since the last score update.

It is worth noting that the calculated score is the score at

the time of calculation. After that, the score starts

deteriorating, so to obtain the current score at any given

time, the following formula can be used:

 (3)

where d is the time passed since the last score update.

TL algorithm. Let D be a set of all documents. A

simplified version of TL algorithm goes as follows:

1. Sort the documents in D by score, descending

2. Calculate Lk – a set of k documents that have a

significantly higher score than the others. Note

that k should be kept significantly smaller than

|D|

3. For each di in in Lk (i = 1, ..., k), create a new

group Gi that contains only di

4. For each document group Gi, find all the

documents in D that have been used at the same

time as any of the documents in Gi, and add them

into Gi

5. Repeat the previous step while

6. Check the similarities between the resulting

groups, and merge groups that contain mostly the

same documents.

Remarks. The algorithm above doesn’t need to finish,

there is a possibility that the condition in the step 5 will

never be met. In practice, it is sufficient to limit the

repetition of the step 4 a predetermined number of times

(for example, three times), eff ectively removing the

potential endless loop. Alternatively, the loop can be

ended also when no new documents have been added to

any of the groups in the last iteration.

Step 4 can be optimised even further by only finding all

documents in D that have been used at the same time as

the high scored documents added to Gi in the previous

step. Mind that when Gi has more items, it is possible to

make a time-interval union of all events for those

documents, and not process each one individually.

Pros and cons. The first benefit over the “brute-force”

algorithm is the speed. Instead of analysing every pair of

documents in D, it analyses only pairs that contain

highest-scored documents. This number can usually be

kept lower than eight per subject.

The second benefit is that it detects indirect connections

with connection chains that have the length up to how

many times the step 4 was repeated. Whats more, if we

add the contextual information of in which iteration a

document was added to Gi, we can get a nice hierarchical

organisation in each of the groups. It also detects groups

that have more than one highest-scored documents.

The main flaw of the TL algorithm is that it doesn’t keep

the connection information between documents once

those are inserted in a group. If this is a desired feature,

instead of repeating only the step 4, the whole algorithm

can be repeated for each group. This way the main groups

will be divided into subgroups, subgroups divided further,

etc. thus retaining all the hierarchical information.

6. APPENDIX 1 – STANDARD ONTOLOGIES

AND QUERIES USED

The whole system is implemented on well established

semantic technologies like RDF and Nepomuk. Most of

the ontologies used are a standard defined by the

Nepomuk project. Everything else is well-defined in a

publicly available KEXT ontology. The relevant parts of

57

the ontologies are presented here in TriG
2
 format, while

the queries are in written in SPARQL
3
.

One of the consequences of using semantic web

technologies is that a document, as the term is used in this

paper, can be any RDF resource – that is, anything that

has an URI – be it an image, a web page, a person, a

message or even an application.

Document usage events. As already stated, the usage

statistics are collected in a dedicated system service. An

application can report events to the service in three levels

of detail.

Level 0. The lowest level is to report only that a

document was “Accessed” by a certain application,

without any other details.

For example, the user clicks a PDF file in the file manager

which in turn opens that file in a PDF reader. The file

manager can send an event that the file was accessed by

the PDF reader. This level should be implemented by the

parts of the workspace, the desktop environment – normal

applications should implement at least Level 1.

Level 1. This level provides more fine-grained events

such as “Opened”, “Closed” and “Modified”.

This way, the system will know for how long a document

was kept open and whether it was edited or just read.

Applications like the file manager from the above

example can’t register these events since those don’t have

the way of telling when the document was closed.

Level 3 contains “Focussed in” and “Focussed out”

events which can tell the service that the document in

question actually had the keyboard input, and wasn’t

minimized or located under some other document.

Ontology. The events are modeled in the NUAO
4
 as sub-

classes of nuao:DesktopEvent. The “Accessed” and

“Opened – Closed” events are modelled with

nuao:UsageEvent. In the case of “Accessed”, the start

time (nuao:start) and end time (nuao:end) are the same.

The focus events are modeled with nuao:FocusEvent that

is registered as a child of the bigger nuao:DesktopEvent.

The same is true for the “Modified” event with a single

diff erence that it has no duration, but only the timestamp

of the modification.

Although the events are well defined in the ontologies

developed in the Nepomuk project, the structures for

remembering the calculated document scores are not.

2 TriG is a machine and human readable syntax for serializing

Named Graphs and RDF datasets developed at Freie Universität

Berlin, the specification is available at http://www4.wiwiss.fu-

berlin.de/bizer/TriG/
3 SPARQL is a W3C standard language for querying RDF

available at http://www.w3.org/TR/rdf-sparql-query/
4 NUAO – Nepomuk User Action Ontology is avaliable at

http://oscaf.sourceforge.net/nuao.html

These, along with the information about the classes are

defined in the KEXT (KDE extensions) ontology.

The main item in the ontology is the so called Activity

which, in the context of an e-Learning environment can

be considered to be a class, or some specific part of the

class if it covers more disjunctive topics.

kext:Activity

 a rdfs:Class ;

 rdfs:subClassOf rdfs:Resource ;

 rdfs:label "activity" .

An activity has an id (kext:activityIdentifier), and other

properties like the name and icon inherited from

rdfs:Resource. Each event is stored with the information

about the activity it belongs to. The property that links

events (and other types of resources) is kext:usedActivity:

kext:usedActivity

 a rdf:Property ;

 rdfs:label "used activity" ;

 rdfs:comment "The activity that was active when

 resource was created. This is mostly

 used for graphs or desktop events."

 rdfs:domain rdfs:Resource ;

 rdfs:range kext:Activity ;

 nrl:maxCardinality 1 .

The calculated cache is stored in instances of the

kext:ResourceScoreCache class:

kext:ResourceScoreCache

 a rdfs:Class ;

 rdfs:subClassOf rdfs:Resource ;

 rdfs:label "Resource score cache" ;

 rdfs:comment "For storing the automatically

 calculated score based on the usage

 statistics" .

Each cache is unique for the triple (resource, activity,

agent). Resource (the document) is stored in the

kext:targettedResource, the agent (application that opened

the document) in kext:initiatingAgent and the activity is

stored in the previously defined kext:usedActivity. The

actual score is stored as kext:cachedScore and nao:score

(Nepomuk Annotation Ontology
5
 namespace).

kext:targettedResource

 a rdf:Property ;

 rdfs:comment "Resource for which the score

 is calculated." ;

 rdfs:domain kext:ResourceScoreCache ;

 rdfs:label "resource" ;

 rdfs:range rdfs:Resource .

kext:initiatingAgent

 a rdf:Property ;

 rdfs:comment "Relates the score to the agent

 initiating the events." ;

5 NAO – Nepomuk Annotation Ontology –

http://oscaf.sourceforge.net/nao.html

58

http://www4.wiwiss.fu-berlin.de/bizer/TriG/
http://www4.wiwiss.fu-berlin.de/bizer/TriG/
http://www.w3.org/TR/rdf-sparql-query/
http://oscaf.sourceforge.net/nuao.html

 rdfs:domain kext:ResourceScoreCache ;

 rdfs:label "involved agent" ;

 rdfs:range nao:Agent .

kext:cachedScore

 a rdf:Property ;

 rdfs:subPropertyOf nao:score ;

 rdfs:comment "The automatically calculated

 score" ;

 rdfs:domain kext:ResourceScoreCache ;

 rdfs:label "calculated score" ;

 rdfs:range xsd:float .

Score calculation. The score is calculated by retrieving

all events that haven’t yet been processed with the next

query:

select distinct ?r where {

 ?r a nuao:DesktopEvent .

 ?r kext:usedActivity <activity> .

 ?r nuao:targettedResource <document> .

 ?r nuao:initiatingAgent <application> .

 ?r nuao:end ?end .

 FILTER(?end >= <lastModifiedTime>) .

}

And for each of the resulting events, the score is increased

like this (C++ code):

score += ::exp(- days / 32.0) * intervalLength / 60.0;

TL algorithm. As previously stated, the first step of the

algorithm is to get the highest scored documents with the

following SPARQL query, and from the resulting list to

only select only those that have a significantly higher

score than others.

select distinct ?resource,

 (

 (

 SUM (

 ?lastScore * bif:exp(

 - bif:datediff(’day’, ?lastUpdate,

 currentDateTime)

)

)

) as ?score

) where {

 ?cache kext:targettedResource ?resource .

 ?cache a kext:ResourceScoreCache .

 ?cache nao:lastModified ?lastUpdate .

 ?cache kext:cachedScore ?lastScore .

 ?cache kext:usedActivity <activity> .

}

GROUP BY (?resource)

ORDER BY DESC (?score)

For each of the resulting documents, an instance of a

kext:UsageGroup is created. Each group is divided into

layers (kext:UsageGroupLayer) – one layer per algorithm

iteration. The iteration number in which the layer is

created is stored as kext:layerOrder.

kext:UsageGroup

 a rdfs:Class ;

 rdfs:subClassOf rdfs:Resource ;

 rdfs:label "Resource group" ;

 rdfs:comment "A group of resources that are

 used together" .

kext:UsageGroupLayer

 a rdfs:Class ;

 rdfs:subClassOf rdfs:Resource ;

 rdfs:label "Layer of the resource group" ;

 rdfs:comment "A group of resources that are

 used together with the resources

 from the previous layer" .

kext:layerOrder

 a rdf:Property ;

 rdfs:comment "The order of the layer

 in a group" ;

 rdfs:domain kext:UsageGroupLayer ;

 rdfs:label "layer order" ;

 rdfs:range xsd:int .

Every kext:UsageGroupLayer is linked to the

kext:UsageGroup it belongs to via the nie:isPartOf

(Nepomuk Information Element namespace) property,

just as is every document is to the corresponding

kext:UsageGroupLayer.

In order to retrieve only the documents that belong to only

one layer, as used in the TL algorithm, the following

query is suficient:

select ?document where {

 ?document nie:isPartOf ?layer .

 ?layer kext:layerOrder "<level>"^^xsd:int .

 ?layer nie:isPartOf <group> .

}

To retrieve all documents that belong to a group,

regardless of the layer, the following can be done:

select ?document where {

 ?document nie:isPartOf ?layer .

 ?layer a kext:UsageGroupLayer .

 ?layer nie:isPartOf <group> .

}

We didn’t need to specify the type of ?layer in the former

query since kext:layerOrder is defined only on

kext:UsageGroupLayer instances.

7. CONCLUSION

Semantic web and related technologies have recently had

a lot of impact on the e-Learning environments. While

most of these developments need an explicit effort from

the content creators to insert RDF meta-data into lectures

or other kinds of documents, or to create RDF-triples

linking the documents together, this can sometimes be

done automatically from the gathered usage-statistics.

59

This paper presented a rather efficient way of doing this

by recognizing the important documents and grouping the

less important ones around them.

Apart from helping in navigation through vast amounts of

data, this approach allows the lecturers to retrace the

students' usage patterns to be able to see to which topics

they gave too much or too little attention, to see what

literature should be added to the default setup for the

exam and how those should be grouped in the LMS.

LITERATURE

[1] Hugo Zaragoza, Nick Craswell, Michael Taylor,

Suchi Saria, and Stephen Robertson. Microsoft

Cambridge at TREC-13: Web and HARD tracks. In

Proceedings of TREC-2004.

[2] Paul-Alexandru Chirita and Wolfgang Nejdl. L3S

Research Center / University of Hanover: Analyzing

User Behavior to Rank Desktop Items.

60

